MARS – 字节推出优化大模型训练效率的框架

1个月前发布 32 00

MARS(Make vAriance Reduction Shine)是字节跳动推出的创新的优化框架,提升大型模型训练的效率。MARS融合预条件梯度方法与方差减少技术,基于缩放随机递归动量技术优化梯度估计。MARS框架灵活,支持全矩阵或对角Hessian近似,衍生出基于AdamW、Lion和Shampoo的三种优化算法实例。实验结果表明...

收录时间:
2025-12-16
MARS – 字节推出优化大模型训练效率的框架MARS – 字节推出优化大模型训练效率的框架

MARS(Make vAriance Reduction Shine)是字节跳动推出的创新的优化框架,提升大型模型训练的效率。MARS融合预条件梯度方法与方差减少技术,基于缩放随机递归动量技术优化梯度估计。MARS框架灵活,支持全矩阵或对角Hessian近似,衍生出基于AdamW、Lion和Shampoo的三种优化算法实例。实验结果表明,MARS在训练GPT-2模型时,相较传统的AdamW优化器,展现出卓越的性能。

官网:https://arxiv.org/pdf/2411.10438


立即打开官网

数据统计

相关导航