VRAG-RL – 阿里通义推出的多模态RAG推理框架

1个月前发布 36 00

VRAG-RL是阿里巴巴通义大模型团队推出的视觉感知驱动的多模态RAG推理框架,专注于提升视觉语言模型(VLMs)在处理视觉丰富信息时的检索、推理和理解能力。基于定义视觉感知动作空间,让模型能从粗粒度到细粒度逐步获取信息,更有效地激活模型的推理能力。VRAG-RL引入综合奖励机制,结合检索效率和基于模型的结果奖励,优化模型的检索和生成能力...

收录时间:
2025-12-16
VRAG-RL – 阿里通义推出的多模态RAG推理框架VRAG-RL – 阿里通义推出的多模态RAG推理框架

VRAG-RL是阿里巴巴通义大模型团队推出的视觉感知驱动的多模态RAG推理框架,专注于提升视觉语言模型(VLMs)在处理视觉丰富信息时的检索、推理和理解能力。基于定义视觉感知动作空间,让模型能从粗粒度到细粒度逐步获取信息,更有效地激活模型的推理能力。VRAG-RL引入综合奖励机制,结合检索效率和基于模型的结果奖励,优化模型的检索和生成能力。在多个基准测试中,VRAG-RL显著优于现有方法,展现在视觉丰富信息理解领域的强大潜力。

官网:https://github.com/Alibaba-NLP/VRAG


立即打开官网

数据统计

相关导航